Math 221: LINEAR ALGEBRA

Chapter 5. Vector Space \mathbb{R}^{n}
§5-4. Rank of a Matrix

Le Chen ${ }^{1}$
Emory University, 2021 Spring

(last updated on $01 / 25 / 2021$)

Row Space and Column Spaces

The Rank Theorem

Rank-Nullity Theorem

Full Rank Cases

Row Space and Column Spaces

The Rank Theorem

Rank-Nullity Theorem

Full Rank Cases

Row Space and Column Spaces

Definitions

Let A be an $\mathrm{m} \times \mathrm{n}$ matrix.

- The column space of A, denoted $\operatorname{col}(\mathrm{A})$ is the subspace of \mathbb{R}^{m} spanned by the columns of A .

$$
\left[\begin{array}{ccc}
1 \\
14 \\
4 \\
15
\end{array}\right)\left(\begin{array}{c}
8 \\
11 \\
5 \\
10
\end{array}\right)\left(\begin{array}{c}
13 \\
2 \\
16 \\
3 \\
7 \\
9 \\
6
\end{array}\right]
$$

- The row space of A, denoted $\operatorname{row}(A)$ is the subspace of \mathbb{R}^{n} spanned by the rows of A (or the columns of A^{T}).
$\left[\begin{array}{cccc}\hline 1 & 8 & 13 & 12 \\ 14 & 11 & 2 & 7 \\ 4 & 5 & 16 & 9 \\ 15 & 10 & 3 & 6\end{array}\right]$

We saw earlier that $\operatorname{col}(\mathrm{A})=\mathrm{im}(\mathrm{A})$.

Remark (Notation)

Let A and B be $\mathrm{m} \times \mathrm{n}$ matrices. We write $\mathrm{A} \rightarrow \mathrm{B}$ if B can be obtained from A by a sequence of elementary row (column) operations. Note that $\mathrm{A} \rightarrow \mathrm{B}$ if and only if $\mathrm{B} \rightarrow \mathrm{A}$.

Lemma

Let A and B be $\mathrm{m} \times \mathrm{n}$ matrices.

1. If $A \rightarrow B$ by elementary row operations, then $\operatorname{row}(A)=\operatorname{row}(B)$.
2. If $\mathrm{A} \rightarrow \mathrm{B}$ by elementary column operations, then $\operatorname{col}(\mathrm{A})=\operatorname{col}(\mathrm{B})$.

Proof.
It suffices to prove only part one, and only for a single row operation. (Why?)
Thus let $\overrightarrow{\mathrm{r}}_{1}, \overrightarrow{\mathrm{r}}_{2}, \ldots, \overrightarrow{\mathrm{r}}_{\mathrm{m}}$ denote the rows of A .

- If B is obtained from A by interchanging two rows of A , then A and B have exactly the same rows, so $\operatorname{row}(B)=\operatorname{row}(A)$.

Proof. (continued)

- Suppose $\mathrm{p} \neq 0$, and suppose that for some $\mathrm{j}, 1 \leq \mathrm{j} \leq \mathrm{m}, \mathrm{B}$ is obtained from A by multiplying row j by p . Then

$$
\operatorname{row}(B)=\operatorname{span}\left\{\overrightarrow{\mathrm{r}}_{1}, \ldots, \mathrm{pr}_{\mathrm{j}}, \ldots, \overrightarrow{\mathrm{r}}_{\mathrm{m}}\right\} .
$$

Since

$$
\left\{\overrightarrow{\mathrm{r}}_{1}, \ldots, \mathrm{p}_{\mathrm{r}}, \ldots, \overrightarrow{\mathrm{r}}_{\mathrm{m}}\right\} \subseteq \operatorname{row}(\mathrm{A})
$$

it follows that row $(\mathrm{B}) \subseteq \operatorname{row}(\mathrm{A})$. Conversely, since

$$
\left\{\overrightarrow{\mathrm{r}}_{1}, \ldots, \overrightarrow{\mathrm{r}}_{\mathrm{m}}\right\} \subseteq \operatorname{row}(\mathrm{B})
$$

it follows that $\operatorname{row}(\mathrm{A}) \subseteq \operatorname{row}(\mathrm{B})$. Therefore, $\operatorname{row}(\mathrm{B})=\operatorname{row}(\mathrm{A})$.

Proof. (continued)

- Suppose $\mathrm{p} \neq 0$, and suppose that for some i and $\mathrm{j}, 1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{m}, \mathrm{B}$ is obtained from A by adding p time row j to row i . Without loss of generality, we may assume $\mathrm{i}<\mathrm{j}$. Then

$$
\operatorname{row}(\mathrm{B})=\operatorname{span}\left\{\overrightarrow{\mathrm{r}}_{1}, \ldots, \overrightarrow{\mathrm{r}}_{\mathrm{i}}-1, \overrightarrow{\mathrm{r}}_{\mathrm{i}}+\mathrm{p} \overrightarrow{\mathrm{r}}_{\mathrm{j}}, \ldots, \overrightarrow{\mathrm{r}}_{\mathrm{j}}, \ldots, \overrightarrow{\mathrm{r}}_{\mathrm{m}}\right\}
$$

Since

$$
\left\{\overrightarrow{\mathrm{r}}_{1}, \ldots, \overrightarrow{\mathrm{r}}_{\mathrm{i}-1}, \overrightarrow{\mathrm{r}}_{\mathrm{i}}+\mathrm{p} \overrightarrow{\mathrm{r}}_{\mathrm{j}}, \ldots, \overrightarrow{\mathrm{r}}_{\mathrm{m}}\right\} \subseteq \operatorname{row}(\mathrm{A})
$$

it follows that row $(\mathrm{B}) \subseteq \operatorname{row}(\mathrm{A})$. Conversely, since

$$
\left\{\overrightarrow{\mathrm{r}}_{1}, \ldots, \overrightarrow{\mathrm{r}}_{\mathrm{m}}\right\} \subseteq \operatorname{row}(\mathrm{B})
$$

it follows that $\operatorname{row}(A) \subseteq \operatorname{row}(B)$. Therefore, $\operatorname{row}(B)=\operatorname{row}(A)$.

Corollary

Let A be an $\mathrm{m} \times \mathrm{n}$ matrix, U an invertible $\mathrm{m} \times \mathrm{m}$ matrix, and V an invertible $\mathrm{n} \times \mathrm{n}$ matrix. Then $\operatorname{row}(\mathrm{UA})=\operatorname{row}(\mathrm{A})$ and $\operatorname{col}(\mathrm{AV})=\operatorname{col}(\mathrm{A})$,

Proof.
Since U is invertible, U is a product of elementary matrices, implying that $\mathrm{A} \rightarrow$ UA by a sequence of elementary row operations. By Lemma 2, $\operatorname{row}(\mathrm{UA})=\operatorname{row}(\mathrm{A})$.
Now consider $\mathrm{AV}: \operatorname{col}(\mathrm{AV})=\operatorname{row}\left((\mathrm{AV})^{\mathrm{T}}\right)=\operatorname{row}\left(\mathrm{V}^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}\right)$ and V^{T} is invertible (a matrix is invertible if and only if its transpose is invertible). It follows from the first part of this Corollary that

$$
\operatorname{row}\left(\mathrm{V}^{\mathrm{T}} \mathrm{~A}^{\mathrm{T}}\right)=\operatorname{row}\left(\mathrm{A}^{\mathrm{T}}\right)
$$

But $\operatorname{row}\left(\mathrm{A}^{\mathrm{T}}\right)=\operatorname{col}(\mathrm{A})$, and therefore $\operatorname{col}(\mathrm{AV})=\operatorname{col}(\mathrm{A})$.

Lemma

If R is a row-echelon matrix then

1. the nonzero rows of R are a basis of row (R);
2. the columns of R containing the leading ones are a basis of $\operatorname{col}(\mathrm{R})$.

Example

Let

$$
\mathrm{R}=\left[\begin{array}{rrrrrr}
1 & 2 & 2 & -2 & 0 & 0 \\
0 & 1 & 3 & 1 & -1 & 2 \\
0 & 0 & 0 & 1 & -2 & 5 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

1. Since the nonzero rows of R are linearly independent, they form a basis of row(R).
2. Let $B=\left\{\overrightarrow{\mathrm{e}}_{1}, \overrightarrow{\mathrm{e}}_{2}, \overrightarrow{\mathrm{e}}_{3}, \overrightarrow{\mathrm{e}}_{4}\right\} \subseteq \mathbb{R}^{5}$. Then B is linearly independent and spans $\operatorname{col}(\mathrm{R})$, and thus is a basis of $\operatorname{col}(\mathrm{R})$. This tells us that
$\operatorname{dim}(\operatorname{col}(\mathrm{R}))=4$. Now let X denote the set of columns of R that contain the leading ones. Then X is a linearly independent subset of $\operatorname{col}(\mathrm{R})$ with $4=\operatorname{dim}(\operatorname{col}(\mathrm{R}))$ vectors. It follows that X spans $\operatorname{col}(\mathrm{R})$, and therefore is a basis of $\operatorname{col}(\mathrm{R})$.

Problem

Find a basis of $\mathrm{U}=\operatorname{span}\left\{\left[\begin{array}{r}1 \\ -1 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 5 \\ 1\end{array}\right],\left[\begin{array}{r}4 \\ -1 \\ 5 \\ 7\end{array}\right]\right\}$ and find $\operatorname{dim}(\mathrm{U})$.
Solution
Let A the the 3×4 matrix whose rows are the three columns listed. Then $\mathrm{U}=\operatorname{row}(\mathrm{A})$, so it suffices to find a basis of row(A).

$$
A=\left[\begin{array}{rrrr}
1 & -1 & 0 & 3 \\
2 & 1 & 5 & 1 \\
4 & -1 & 5 & 7
\end{array}\right]
$$

Find R , a row-echelon form of A . Then the nonzero rows of R are a basis of $\operatorname{row}(R)$. Since $\operatorname{row}(A)=\operatorname{row}(R)$, the nonzero rows of R are a basis of row(A).

Solution (continued)

$$
\left[\begin{array}{rrrr}
1 & -1 & 0 & 3 \\
2 & 1 & 5 & 1 \\
4 & -1 & 5 & 7
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & -1 & 0 & 3 \\
0 & 1 & 5 / 3 & -5 / 3 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Therefore, $\mathrm{B}=\left\{\left[\begin{array}{r}1 \\ -1 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{r}0 \\ 3 \\ 5 \\ -5\end{array}\right]\right\}$ is a basis of U and $\operatorname{dim}(\mathrm{U})=2$.
Solution (Another solution - usually more work.)
Take a linear combination of the three given vectors and set it equal to $\overrightarrow{0}_{4}$. If the vectors are independent, then they form a basis of U . Otherwise, delete vectors to cut the given set of vectors down to a basis.

Row Space and Column Spaces

The Rank Theorem

Rank-Nullity Theorem

Full Rank Cases

$$
\operatorname{dim}(\operatorname{row}(\mathrm{A}))=\operatorname{dim}(\operatorname{col}(\mathrm{A}))=\operatorname{rank}(\mathrm{A})
$$

Remark

Recall that rank (A) is defined to be the nonzero rows in the row echelon form of A. From what we just learned, the rank of A can be equivalently defined as $\operatorname{rank}(A)=\operatorname{dim}(\operatorname{row}(A))$.

Theorem (Rank Theorem)
Let $A=\left[\begin{array}{llll}\overrightarrow{A_{1}} & \overrightarrow{A_{2}} & \cdots & \overrightarrow{A_{n}}\end{array}\right]$ be an $m \times n$ matrix with columns $\left\{\overrightarrow{\mathrm{A}_{1}}, \overrightarrow{\mathrm{~A}_{2}}, \ldots, \overrightarrow{\mathrm{~A}_{n}}\right\}$, and suppose that rank $(\mathrm{A})=\mathrm{r}$. Then

$$
\operatorname{dim}(\operatorname{row}(\mathrm{A}))=\operatorname{dim}(\operatorname{col}(\mathrm{A}))=\mathrm{r} .
$$

Furthermore, if R is a row-echelon form of A then

1. the r nonzero rows of R are a basis of row(A);
2. if $S=\left\{\vec{A}_{j_{1}}, \vec{A}_{j_{2}}, \ldots, \vec{A}_{j_{r}}\right\}$ are the r columns of A corresponding to the columns of R containing leading ones, then S is basis of $\operatorname{col}(\mathrm{A})$.

Problem

For the following matrix A, find rank (A) and bases for $\operatorname{row}(\mathrm{A})$ and $\operatorname{col}(\mathrm{A})$.

$$
A=\left[\begin{array}{rrrr}
2 & -4 & 6 & 8 \\
2 & -1 & 3 & 2 \\
4 & -5 & 9 & 10 \\
0 & -1 & 1 & 2
\end{array}\right]
$$

Solution

$$
\left[\begin{array}{rrrr}
2 & -4 & 6 & 8 \\
2 & -1 & 3 & 2 \\
4 & -5 & 9 & 10 \\
0 & -1 & 1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & -2 & 3 & 4 \\
0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$\rightarrow \operatorname{rank}(\mathrm{A})=2$.
$\triangleright\left\{\left[\begin{array}{llll}1 & -2 & 3 & 4\end{array}\right],\left[\begin{array}{llll}0 & -1 & -1 & 2\end{array}\right]\right\}$ is a basis of $\operatorname{row}(\mathrm{A})$.
$\boldsymbol{\nabla}\left\{\left[\begin{array}{l}2 \\ 2 \\ 4 \\ 0\end{array}\right],\left[\begin{array}{l}-4 \\ -1 \\ -5 \\ -1\end{array}\right]\right\}$ is a basis of $\operatorname{col}(\mathrm{A})$.

Problem (revisited)
Find a basis of $\mathrm{U}=\operatorname{span}\left\{\left[\begin{array}{r}1 \\ -1 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 5 \\ 1\end{array}\right],\left[\begin{array}{r}4 \\ -1 \\ 5 \\ 7\end{array}\right]\right\}$ and find $\operatorname{dim}(\mathrm{U})$.
Solution
Let A denote the matrix whose columns are the three vectors listed, and let R denote a row-echelon form of A. Then

$$
\begin{gathered}
\mathrm{A}=\left[\begin{array}{rrr}
1 & 2 & 4 \\
-1 & 1 & -1 \\
0 & 5 & 5 \\
3 & 1 & 7
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 2 & 4 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\mathrm{R} . \\
\text { By the Rank Theorem, }\left\{\left[\begin{array}{r}
1 \\
-1 \\
0 \\
3
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
5 \\
1
\end{array}\right]\right\} \text { is a basis of } \mathrm{U}=\operatorname{col}(\mathrm{A}) \text {, so }
\end{gathered}
$$ $\operatorname{dim}(\mathrm{U})=2$.

Corollary

1. For any matrix $A, \operatorname{rank}(A)=\operatorname{rank}\left(\mathrm{A}^{\mathrm{T}}\right)$.
2. For any $m \times n$ matrix A, $\operatorname{rank}(A) \leq m$ and $\operatorname{rank}(A) \leq n$.
3. Let A be an $\mathrm{m} \times \mathrm{n}$ matrix. If U and V are invertible matrices (of sizes $\mathrm{m} \times \mathrm{m}$ and $\mathrm{n} \times \mathrm{n}$, respectively), then

$$
\operatorname{rank}(\mathrm{A})=\operatorname{rank}(\mathrm{UA})=\operatorname{rank}(\mathrm{AV})
$$

Lemma

Let A be an $\mathrm{m} \times \mathrm{n}$ matrix, U a $\mathrm{p} \times \mathrm{m}$ matrix, and V an $\mathrm{n} \times \mathrm{q}$ matrix.

1. $\operatorname{col}(\mathrm{AV}) \subseteq \operatorname{col}(\mathrm{A})$ with equality if $\mathrm{VV}^{\prime}=\mathrm{I}_{\mathrm{n}}$ for some V^{\prime}.
2. $\operatorname{row}(U A) \subseteq \operatorname{row}(A)$ with equality if $U^{\prime} U=I_{m}$ for some U^{\prime}.

Proof.

(1) Write $V=\left[\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{\mathrm{q}}\end{array}\right]$, where $\overrightarrow{\mathrm{v}}_{\mathrm{j}}$ denotes column j of V , $1 \leq \mathrm{j} \leq \mathrm{q}$. Then $\mathrm{AV}=\left[\begin{array}{llll}A \vec{v}_{1} & A \vec{v}_{2} & \cdots & A \vec{v}_{\mathrm{q}}\end{array}\right]$, where $A \vec{v}_{\mathrm{j}}$ is column j of AV . By the definition of matrix-vector multiplication, $\mathrm{A} \overrightarrow{\mathrm{v}}_{\mathrm{j}}$ is a linear combination of the columns of A, and thus $A \vec{v}_{j} \in \operatorname{col}(A)$ for each j. Since $\mathrm{A} \overrightarrow{\mathrm{v}}_{1}, \mathrm{~A} \overrightarrow{\mathrm{v}}_{2}, \ldots, \mathrm{~A} \overrightarrow{\mathrm{v}}_{\mathrm{q}} \in \operatorname{col}(\mathrm{A})$,

$$
\operatorname{span}\left\{\mathrm{A} \overrightarrow{\mathrm{v}}_{1}, \mathrm{~A} \overrightarrow{\mathrm{v}}_{2}, \ldots, \mathrm{~A} \overrightarrow{\mathrm{v}}_{\mathrm{q}}\right\} \subseteq \operatorname{col}(\mathrm{A})
$$

i.e., $\operatorname{col}(A V) \subseteq \operatorname{col}(A)$. If for some V^{\prime} we have $\mathrm{VV}^{\prime}=\mathrm{I}_{\mathrm{n}}$, then

$$
\operatorname{col}(A)=\operatorname{col}\left(A V V^{\prime}\right) \subseteq \operatorname{col}(A V) \subseteq \operatorname{col}(A)
$$

(2) This can be proved by part (1) and the fact that $\operatorname{row}(A)=\operatorname{col}\left(A^{T}\right)$.

Row Space and Column Spaces

The Rank Theorem

Rank-Nullity Theorem

Full Rank Cases

Rank-Nullity Theorem

Theorem (Rank-Nullity Theorem)

Let A denote an $m \times n$ matrix of rank r. Then

1. The $\mathrm{n}-\mathrm{r}$ basic solutions to the system $\mathrm{A} \overrightarrow{\mathrm{x}}=\overrightarrow{0}_{\mathrm{m}}$ provided by the Gaussian algorithm are a basis of null(A), so

$$
\operatorname{dim}(\mathrm{null}(\mathrm{~A}))=\mathrm{n}-\mathrm{r}
$$

2. The rank theorem provides a basis of $\operatorname{im}(A)=\operatorname{col}(A)$, and $\operatorname{dim}(\mathrm{im}(\mathrm{A}))=\mathrm{r}$.

Remark (Common notation)

The nullspace A is also called kernel space of A, written as ker(A), i.e., $\operatorname{ker}(\mathrm{A})=\operatorname{null}(\mathrm{A})$. Usually, the nullity of A is defined to be

$$
\operatorname{Nullity}(\mathrm{A})=\operatorname{dim}(\operatorname{null}(\mathrm{A}))=\operatorname{dim}(\operatorname{ker}(\mathrm{A}))
$$

Let $\mathrm{T}: \mathrm{V} \mapsto \mathrm{W}$ be the linear map from space V to W . Suppose $\mathrm{V}=\mathbb{R}^{\mathrm{n}}$ and $\mathrm{W}=\mathbb{R}^{\mathrm{m}}$ and let A be the induced matrix.

Proof. (Outline)

- We have already seen that null(A) is spanned by any set of basic solutions to $A \vec{x}=\overrightarrow{0}_{m}$, so it is enough to prove that $\operatorname{dim}(\operatorname{null}(\mathrm{A}))=\mathrm{n}-\mathrm{r}$, which will implies that the set of basic solutions is independent, hence this set forms a basis.
- Suppose $\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}}\right\}$ is a basis of null(A)
\downarrow Extend $\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}}\right\}$ to a basis $\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}}, \ldots \overrightarrow{\mathrm{x}}_{\mathrm{n}}\right\}$ of \mathbb{R}^{n}.
- Consider the set $\left\{\mathrm{A} \overrightarrow{\mathrm{x}}_{1}, \mathrm{~A} \overrightarrow{\mathrm{x}}_{2}, \ldots, \mathrm{~A} \overrightarrow{\mathrm{x}}_{\mathrm{k}}, \ldots \mathrm{A} \overrightarrow{\mathrm{x}}_{\mathrm{n}}\right\} \subseteq \mathbb{R}^{\mathrm{m}}$
\downarrow Then $A \vec{x}_{j}=\overrightarrow{0}_{m}$ for $1 \leq \mathrm{j} \leq \mathrm{k}$ since $\overrightarrow{\mathrm{x}}_{1}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}} \in \operatorname{null}(\mathrm{A})$.
- To complete the proof, show $S=\left\{A \vec{x}_{k+1}, \ldots A \vec{x}_{n}\right\}$ is a basis of im(A), by showing that (exercise!)
(1) S is independent
(2) S spans im(A)
- Since $\operatorname{im}(\mathrm{A})=\operatorname{col}(\mathrm{A}), \operatorname{dim}(\operatorname{im}(\mathrm{A}))=\mathrm{r}$, implying $\mathrm{n}-\mathrm{k}=\mathrm{r}$. Hence $\mathrm{k}=\mathrm{n}-\mathrm{r}$.

Problem

For the following matrix A, find bases for null(A) and im(A), and find their dimensions.

$$
A=\left[\begin{array}{rrrr}
2 & -4 & 6 & 8 \\
2 & -1 & 3 & 2 \\
4 & -5 & 9 & 10 \\
0 & -1 & 1 & 2
\end{array}\right]
$$

Solution
Find the basic solutions to $\mathrm{A} \overrightarrow{\mathrm{x}}=\overrightarrow{0}_{4}$.

$$
\left[\begin{array}{rrrr|r}
2 & -4 & 6 & 8 & 0 \\
2 & -1 & 3 & 2 & 0 \\
4 & -5 & 9 & 10 & 0 \\
0 & -1 & 1 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr|r}
1 & -2 & 3 & 4 & 0 \\
0 & 1 & -1 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Hence,

$$
\overrightarrow{\mathrm{x}}=\left[\begin{array}{c}
-\mathrm{s} \\
\mathrm{~s}+2 \mathrm{t} \\
\mathrm{~s} \\
\mathrm{t}
\end{array}\right] \quad \mathrm{s}, \mathrm{t} \in \mathbb{R} .
$$

Therefore,

$$
\left\{\left[\begin{array}{r}
-1 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
0 \\
1
\end{array}\right]\right\} \text { and }\left\{\left[\begin{array}{l}
2 \\
2 \\
4 \\
0
\end{array}\right],\left[\begin{array}{l}
-4 \\
-1 \\
-5 \\
-1
\end{array}\right]\right\}
$$

are bases of null(A) and im(A), respectively, so

$$
\operatorname{dim}(\operatorname{null}(\mathrm{A}))=2 \quad \text { and } \quad \operatorname{dim}(\operatorname{im}(\mathrm{A}))=2 .
$$

Problem
Can a 5×6 matrix have independent columns? Independent rows? Justify your answer.

Solution
The rank of the matrix is at most five; since there are six columns, the columns can not be independent. However, the rows could be independent: take a 5×6 matrix whose first five columns are the columns of the 5×5 identity matrix.

Problem

Let A be an $\mathrm{m} \times \mathrm{n}$ matrix with $\operatorname{rank}(\mathrm{A})=\mathrm{m}$. Prove that $\mathrm{m} \leq \mathrm{n}$.

Proof.

As a consequence of the Rank Theorem, we have

$$
\operatorname{rank}(\mathrm{A}) \leq \mathrm{m} \text { and } \quad \operatorname{rank}(\mathrm{A}) \leq \mathrm{n} .
$$

Since rank $(\mathrm{A})=\mathrm{m}$, it follows that $\mathrm{m} \leq \mathrm{n}$.

Problem

Let A be an 5×9 matrix. Is it possible that $\operatorname{dim}($ null $(\mathrm{A}))=3$? Justify your answer.

Solution

As a consequence of the Rank Theorem, we have rank $(\mathrm{A}) \leq 5$, so $\operatorname{dim}(\operatorname{im}(\mathrm{A})) \leq 5$. Since $\operatorname{dim}(\operatorname{null}(\mathrm{A}))=9-\operatorname{dim}(\operatorname{im}(\mathrm{A}))$, it follows that

$$
\operatorname{dim}(\operatorname{null}(\mathrm{A})) \geq 9-5=4 .
$$

Therefore, it is not possible that $\operatorname{dim}(\operatorname{null}(\mathrm{A}))=3$.

Row Space and Column Spaces

The Rank Theorem

Rank-Nullity Theorem

Full Rank Cases

Full Rank Cases

Theorem

Let A be an $\mathrm{m} \times \mathrm{n}$ matrix. The following are equivalent.

1. $\operatorname{rank}(A)=n$.
2. $\operatorname{row}(A)=\mathbb{R}^{n}$, i.e., the rows of $A \operatorname{span} \mathbb{R}^{n}$.
3. The columns of A are independent in \mathbb{R}^{m}.
4. The $\mathrm{n} \times \mathrm{n}$ matrix $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ is invertible.
5. There exists and $n \times m$ matrix C so that $C A=I_{n}$.
6. If $A \vec{x}=\overrightarrow{0}_{m}$ for some $\vec{x} \in \mathbb{R}^{n}$, then $\vec{x}=\overrightarrow{0}_{n}$.

Theorem

Let A be an $\mathrm{m} \times \mathrm{n}$ matrix. The following are equivalent.

1. $\operatorname{rank}(\mathrm{A})=\mathrm{m}$.
2. $\operatorname{col}(A)=\mathbb{R}^{m}$, i.e., the columns of $A \operatorname{span} \mathbb{R}^{m}$.
3. The rows of A are independent in \mathbb{R}^{n}.
4. The $m \times m$ matrix $A A^{T}$ is invertible.
5. There exists and $n \times m$ matrix C so that $A C=I_{m}$.
6. The system $A \vec{x}=\vec{b}$ is consistent for every $\vec{b} \in \mathbb{R}^{m}$.

Problem

Let $\overrightarrow{\mathrm{x}}=\left(\mathrm{x}_{1}, \cdots, \mathrm{x}_{\mathrm{k}}\right)^{\mathrm{T}} \in \mathbb{R}^{\mathrm{k}}$. Show that the following matrix is invertible if and only if $\left\{\mathrm{x}_{\mathrm{i}}, \mathrm{i}=1, \cdots, \mathrm{k}\right\}$ are not all equal:

$$
\left(\begin{array}{cc}
\mathrm{k} & \mathrm{x}_{1}+\cdots+\mathrm{x}_{\mathrm{k}} \\
\mathrm{x}_{1}+\cdots+\mathrm{x}_{\mathrm{k}} & \|\mathrm{x}\|^{2}
\end{array}\right)
$$

Solution
Notice that

$$
\left(\begin{array}{cc}
\mathrm{k} & \mathrm{x}_{1}+\cdots+\mathrm{x}_{\mathrm{k}} \\
\mathrm{x}_{1}+\cdots+\mathrm{x}_{\mathrm{k}} & \|\mathrm{x}\|^{2}
\end{array}\right)=\mathrm{A}^{\mathrm{T}} \mathrm{~A}
$$

with

$$
\mathrm{A}=\left[\begin{array}{cc}
1 & \mathrm{x}_{1} \\
1 & \mathrm{x}_{2} \\
\vdots & \vdots \\
1 & \mathrm{x}_{\mathrm{k}}
\end{array}\right]
$$

Now $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ is invertible iff the two columns of A are independent iff $\left\{\mathrm{x}_{\mathrm{i}}, \mathrm{i}=1, \cdots, \mathrm{k}\right\}$ are not all equal.

